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NOMENCLATURE 

Greek symbols 

a, thermal diffusivity ; 

A, thermal layer thickness; 
8, emissivity of surface ; 
b, Stefan-Boltzmann constant; 
7, non-dimensional time ( = [4au2e2Tq/k2] t). 

Subscripts 
b, back face value ; 
1. initial value ; 
s. surface value. 

INTRODUCI’ION 

IT IS desirable to have a rapid and reasonably accurate 
method of solving transient conduction problems which 
involve a radiation boundary condition at the surface. The 
integral method of Goodman [1] appears to be well suited 
to this purpose. ChambrC [2] and Schneider [3] have 
utilized the integral method in solving such problems. Gay 
[4] has compared some finite difference solutions with the 
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integral method and found that the latter can give satis- 
factory results. 

Both ChambrC and Schneider considered cases where the 
incoming heat flux was constant with time (or zero) for 
which the differential equation resulting from the integral 
method could be solved analytically. 

The purpose of this note is to demonstrate the applica- 
bility of the integral technique to cases where the heat flux 
to the surface varies with time. This should be of interest to, 
inter alias, engineers carrying out preliminary design studies 
of radiative heat shields. 

ANALYSIS 

We consider one-dimensional heat conduction in a semi- 
infinite solid with constant properties. If the time varying 
heat flux to the surface is Q(t), the net heat flux into the solid 
will be given by 

q(t) = Q(f) - uW)“ (1) 

We shall assume that Q(t) is analytic near t = 0 and that 
dQ/dt is continuous in the time range of interest. We now 
assume that the perturbation from initially uniform tem- 
perature is restricted to a depth of penetration A. If the 
temperature is assumed to drop from T, to C quadratically 
in x/A, it may be shown by standard methods [l] that the 
resulting temperature distribution which satisfies the boun- 
dary conditions is 

T-7;=(T,-+2($+($] (2) 

with 

T. - z = ; q(t) A(t). (3) 

Substitution of the assumed temperature profile into the 
integral form of the conduction equation results in an ordi- 
nary differential equation linking A and q as functions of t. 
This equation, along with equations (1) and (3), provides the 
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description of the problem. In non-dimensional form the 
equations are 

; (s’q*) = 6q*. (4) 

q* = Q* _ K@ (5) 

with 

7-z = 1 + $ sq*. 16) 

When Q* is constant, it is possible to solve this system of 
equations analytically to get a relationship between T: and 
r, as has been shown for example by Schneider [3]. This 
relationship is 

m 7 =n cV4 - Q*)(Y - 1) - ~Y’(Y - 1)’ dy,  s fy” - Q*," 
(7) 

1 

Actually, Schneider assumed a cubic temperature profile, but 
this causes only a difference in the numerical coefhcient of 
r in equation (7). The above integral may be evaluated 
analytically when Q* = 0. and numerically for each value 
of T: when Q* + 0. 

When Q* is a non-constant function of r, the above method 
clearly breaks down and it becomes necessary to seek an 
alternative one. To avoid trial and error (or iterative) 
solutions it is desirable to use the differenti~ form of 
equation (5), which after elimination of T$ by using equation 
(6). becomes 

dq* dQ* -_ 
dt =dr 

- (1 + : sq*P -$ (sq’). (8) 

It is now required to solve equations (4) and (8) with the 
initial conditions 

S(0) = 0 (9) 

q*(O) = Q*(O) - 1. 00) 

Because of the non-linearity of the equations, their 
solution will, in general, have to be numerical. The major 
difficulty in such a numerical solution lies in the fact that the 
equations become singular as r -+ 0. Thus, an analytical 
small-time or “starting” solution is required which would 
allow numerical integration to start away from the time 
origin. 

To derive such a starting solution we assume that series 
solutions for s and q* in terms of rtfZ exist near r = 0. Then 
if the expansion of Q*(T) for small r is 

Q* = a, + err + a2f2 C (11) 

it may be readily shown, provided Q*(O) f 1, that s and q* 
are given for small r by 

s = h,T 1’2 + h,r + h,r 3’2 c (f2) 

q* = co + c*s Ii2 + c-J7 + cj7 3’2 + I131 

where 

b, = J6 

b, = 1 

c0 = a0 - 1 

c, = $c, 

b, = -!L- 27c, - 125 - 16 
8J6 ( co > 

c2 = a, $ cg + SC, 

A similar procedure may also be followed for the case where 
Q*(O) = 1. This corresponds to a situation where the initial 
net irradiation at the surface exactly balances the radiation 
out. making the initial net heat influx zero. The solutions for 
s and q* for small z are now 

s = 51,P + S,r + j;p f . . (14) 

q* = Et7 + Z3f3’2 + E,? + (1.5) 
where 

6, = J3 E, = a, 

a, = 3/10 E, = J3a, 

27 
t, = toa, + a2. 

It should be noted that both s and q* now grow more 
slowly than in the previous case. Also there is no longer a 
singularity in dq*/dr (and dT:/dr) at T = 0. In both the 
cases above, the small-time solution for T: may easily be 
obtained from equation (6). 

As an example of the first case [Q*(O) # l] we have solved 
a problem considered by Schneider, viz. a semi-infinite solid 
with Q*“4 = @05. The method used is of course valid for 
a time varying Q*; a constant Q* was chosen merely to 
enable a check against an analytical solution. The starting 
solutions given by equations (12) and (13) were used to 
obtain values of q* and s for a small value of r, and thereafter 
equations (4) and (8) were numerically integrated on a digital 
computer. Figure 1 shows that the values of T: thus ob- 
tained check very well against those obtained by Schneider 
from equation (7). Note that in this case Q* enters the num- 
erical computation only through the starting solution. since 
dQ*,/dt = 0 in equation (8). Thus this example serves as a 
rather stiff test of the starting solution. 

As an exampte of a problem of the second type, viz. Q*(O) 
= 1 or q*(O) = 0, we consider the case of a semi-infinite 
solid, initially at uniform temperature T. which exchanges 
heat with a source whose temperature, starting with 7;. 
increases to 5T by the time r = 50, staying constant 
thereafter. 

For this case Q* is 

Q* = I.0 + 24.962 - 0.2496r’ r c 50 
(16) 

= 6250 I > 50. 
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FIG. 1. Temperature variation in finite and semi-infinite slab. 

We have again numerically integrated the differential until s is equal to the non-dimensional slab thickness, Y. 

equations starting from a small value of z > 0, after using After which the back temperature v will start to increase, 

the appropriate starting solutions. Figure 2 shows the according to the governing equations 

resulting variation of 7’:, 4’ and s with t. The surface tem- 
perature seems to foilow the source temperature (not shown) (17) 
very closely, this is consistent with the smallness of 4*. 

We have so far considered only semi-infinite solids. 
However, the extension to finite slabs is quite straight- 
forward, and we shall consider here a slab with an insulated 
back face. As shown by Goodman [l] the solution for this 
finite slab will be identical to that for a semi-infinite one 
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FIG. 2. Surface temperature, net heat flux andT thermal layer thickness for 
time varying nominal heat flux. 
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It is again convenient to use the differential form of (5), 
which after elimination of T:, becomes equation (18). The 
initial condition on 4’ is obtained from the earlier solution, 
while initially, T: = 1. 

Schneider [3] has shown that for Q* = 0, the equations 
for a finite slab have an analytical solution. However, for the 
case of constant Q*( #O) he considered only the semi-infinite 
case. As an example of a finite slab we have considered his 
heat input (Q *iI4 = 0.05) with an arbitrary but computa- 
tionally convenient value of Y = 3.015. Of course the 
method of solution, which was again numerical integration, 
is valid for non-constant Q* also. The resulting solutions 
for T: and T: are shown in Fig. 1. The initial discontinuity 
in the slopes which occurs at r 2 I.15 (which is when 
s = 2) is a consequence of approximations inherent in the 
integral method. 

CLOSURE 

We have considered herein only problems involving a 
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radiation boundary condition at the surface. However, it 
should be evident that similar starting solutions may be 
derived for fairly general forms of q*(T:, T) provided that 
q* is analytic in its arguments near 5 = 0. 
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NOMENCLATURE 

LliP u: = local skin friction coefficient ; 
specific heat at constant pressure ; 
qd(T, - T,) = local heat-transfer coefficient ; 
qi(i, - i,) = local enthalpy difference heat-transfer 
coefhcient ; 

enthalpy ; 
Prandtl number ; 
heat flow per unit time and area; 
(T, - T,)/(u,2/2Cd = recovery factor; 
(i, - Q&f/2) = enthalpy recovery factor; 
h,/pu, = Stanton number based on enthalpy 
difference ; 
temperature ; 
velocity. 

Greek symbols 

fi. viscosity ; 
P> density ; 
‘I, shearing stress. 

Subscripts 
1. based on enthalpy ; 
r, recovery ; 
s, in free stream ; 
w. at wall. 

Superscripts 
* reference condition 

DESIGN calculations aimed at the determination of heat 


